
1 Examples of probability distributions

1.1 Bernoulli, Binomial and multinomial distributions

Suppose we have a basic experiment which can result in either a �success� or a

�failure�. Let p the probability of a success and q = 1 − p the probability of a

failure. This is known as a Bernoulli trial. The mass function can be expressed

as

f (x) = px (1− p)1−x
, x = 0, 1

The mean and variance are

µ = p.σ2 = p (1− p)

As an example, suppose we toss a balanced die once. Identify the event

�success� with getting a �3�. Then p = 1/6, q = 5/6.

Example Throw a balanced die 6 times. What is the probability of observing

exactly 3 ones?

Here, p = 1
6 . Hence, P (X = 3) =

(
6
3

)(
1
6

)3 ( 5
6

)3
= 625

11664 = 0.054

Example We have 5 switches. The probability that a switch fails is 0.1. Then

P (at most one fails) = P (X ≤ 1) = 0.9185

P (none fails) = P (X = 01) = 0.5905
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The binomial distribution arises in a natural way in several repetitions of a basic

Bernoulli experiment. Suppose we repeat a Bernoulli experiment n times under

independent and identical conditions. Let X be a random variable which counts

the number of successes. Then X has a binomial distribution given by

f (x) = (nx) px (1− p)n−x , x = 0, 1, ..., n

The mean and variance are

µ = np.σ2 = np (1− p)
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The multinomial distribution generalizes the binomial. Suppose we have a

basic experiemt that can result in one of k possible outcomes with probabilities

p1, ..., pk respectively,
∑
pi = 1. Suppose that we repeat this experiment n

times under i.i.d. conditions and we observe frequencies x1, ..., xk of occurrence

respectively for the possible outcomes, with
∑
xi = n. Then, the probability

distribution is given by

f (x1, ..., xk) =
n!

x1!...xk!
px1

1 ...pxkk

Covariance (X1, X2) = −np1p2

Example Toss a balanced die twice. The probability of observing exactly one

�5� and one �6� is

2!

1!1!

(
1

6

)2

=
1

18
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1.2 Hypergeometric distribution

The Hypergeometric distribution is given by

h (x;N,n, k) =

(
k
x

) (
N−k
n−x

)
(Nn )

, x ≤ k, n− x ≤ N − k

This is the distribution we have for sampling without replacement n items

from a box containing k items of one kind and N − k items of another kind.

The variable X records the number of items of the �rst kind.

The mean and variance of the random variable X are respectively

µ =
nk

N
, σ2 =

(
N − n
N − 1

)
n
k

N

(
1− k

N

)

Note, for n
N ≤ 0.05, we can use the binomial approximation.
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Example Suppose that i phones come in lots of 10. We inspect them and

accept the entire lot if in a random sample of 3 without replacement, none

are defective. If the lot contains 2 defective i phones the probability of

accepting the lot is

P (X = 0) =

(
2
0

) (
8
3

)
(10
3 )

= 0.467

Hence, approximately 47% of the time, we will accept such lots. Equivalently,

we will reject such lots approximately 53% of the time. We can improve on this

probability if we take a larger sample. For example,

P (X = 0) =


0.3 n = 4

0.22 n = 5
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1.3 Negative binomial and geometric

Suppose that a Bernoulli experiment is repeated until we observe the �rst suc-

cess. Let X denote the number of repetitions needed. Then X has a geometric

distribution given by

f (x) = p (1− p)x−1
, x = 1, 2, ...

The mean and variance of the random variable X are respectively

µ =
1

p
, σ2 =

1− p
p2

Note, P (X > x) =
∑∞
k=x+1 p (1− p)k−1

= (1− p)x

We may generalize the geometric distribution by looking at the number of

repetitions needed to obtain the kth success.

f (x) =
(
x−1
k−1

)
pk (1− p)x−k , x = k, k + 1, ...

The mean and variance in that case are respectively

µ =
k

p
, σ2 = k

(
1− p
p2

)
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Example A door is closed repeatedly to test it for wear. The probability that

it malfunctions at any one closings is p = 0.001. What is the probability

that it will �rst malfunction after 100 closings?

0.001 (1− 0.001)
99

= 9.057× 10−4

Note that

P (X ≤ x) = 1− P (X > x) = 1− (1− p)x

=



0.0943 x = 99

0.63194 x = 999

1 x = 9999
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1.4 Poisson distribution and the Poisson process

Suppose that an individual receives calls on his cellular phone during a time

interval (0, t) .What is the probability that he will receive exactly 5 calls during

that time interval?

In order to answer this question, we need to develop a model. We begin

by dividing the interval into n equal segments of length t
n each. We make the

following assumptions:

i) The probability of receiving a call in a segment is proportional to the

length of the segment i.e. p = λ
(
t
n

)
ii) The events in di�erent intervals are independent

iii) When n→∞, p→ 0 , np remains constant.

Under those assumptions, the random variable X which counts the number

of calls received follows a binomial distribution with parameters n, p

Theorem Let X be a binomial random variable with probability distribution

b (x;n, p) . Then when n→∞, p→ 0 and np remains constant

b (x;n, p)→ p (x;µ) =
e−λλx

x!
, x = 0, 1, 2, ...

The mean and variance of the Poisson distribution are respectively

µ = λt, σ2 = λt
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This theorem can also be used to approximate binomial probabilities. The

approximation is good if n ≥ 20, p ≤ 0.05 or if n ≥ 100, p ≤ 0.10

Example Suppose we have a binomial distribution with parameters n = 400, p =

0.005,np = 2. Then P (X = 1) = F (1) − F (0) = 0.270671. The exact

value is 0.270669.

The Poisson approximation to the binomial is usually good when n ≥ 20, p ≤

0.05 or if n ≥ 100, p ≤ 0.10

Example Suppose that on average an individual receives 5 calls in 10 minutes.

What is the probability that he receives exactly 2 calls in one minute?

Assuming we have a Poisson process, we know that the mean λt = 5. Substi-

tuting t = 10, we see that λ = 5
10 . The time interval is now changing to one

minute where the mean is λt = 5
10 (1).

P (X = 2) =
e−

1
2

2!

(
1

2

)2

TableA.2p.434 For x = 2, the probability is 0.9856− 0.9098− 0.0758.
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1.5 Continuous uniform

The mean and variance of the uniform distribution on the interval (A,B) are

µ =
A+B

2
, σ2 =

(B −A)
2

12

Example Pick a number at random from the interval (0, 1) Repeat this 5 times.

What is the probability that at most 2 of the numbers will be leass than

0.25?

This is a two part problem involving the uniform and the binomial. In the �rst

part, we calculate the probability of having a number less than 0.25. It is from

the uniform equal to p = 0.25. Now we apply the binomial with n = 5, p = 0.25.

The probability of at most 2 is 0.8965 from Table A.1 p.428.
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1.6 Normal distribution

The normal distribution is by far the most important distribution in probability

and statistics. It has acquired its distinction becasue of the central limit theorem

which states that the limiting distribution of the mean of a random sample from

a distribution having �nite variance is normal .The density has the following

form

f (x;µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 ,−∞ < x <∞,−∞ < µ <∞, σ > 0

The mean and variance of the normal distribution are respectively

µ, σ2

The special case µ = 0, σ = 1 de�nes the standard normal distribution whose

cdf is denoted by Φ (x).

TableA.3p436 provides the area under the curve between any two points for

the standard normal distribution.
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The following theorem shows that only the standard normal needs to be

tabulated.

Theorem Let X be a random variable with distribution n (x;µ, σ) . Then the

transformed variable Z = X−µ
σ haas a standard normal distribution.

As a consequence, we can compute

P (x1 < X < x2) = Φ

(
x2 − µ
σ

)
− Φ

(
x1 − µ
σ

)

Note: i) P (X ≥ x) = 1− Φ (x)

ii) Φ (−x) = 1− Φ (x)

iii) Φ (−1.96) = 0.025; Φ (1.96) = 0.9750

Example Find x such that Φ (x) = 0.3.

From Table A.3, Φ (−0.52) = 0.3015,Φ (−0.54) = 0.2981. Using linear interpo-

lation,

x− (−0.52)

0.30− (0.3015)
=
−0.52− (−0.54)

0.3015− (0.2981)

we �nd x = −0.5288
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Example1 For a n (x; 3, 0.005) ,

P (X < 2.99) = 0.0228 = P (X > 3.01)

Example2 For a n (x; 1.5, 0.2) ,

P (X < 1.108) = 0.025 = P (X > 1.892)

Example For a n (x; 10, 5) �nd

P (5 < X < 8) = Φ

(
8− 10

5

)
− Φ

(
5− 10

5

)
= Φ (−0.4)− Φ (−1.0) = 0.3446− 0.1587 = 0.1859

Example Speci�cations for the diameter of ball bearings are 3 ± 0.01cm. As-

suming that the diameter follows a normal distribution with mean 3 and

variance 0.0052, what proportion falls within the speci�cations?

We need to calculate

P (3− 0.01 < X < 3 + 0.01) = Φ

(
3.01− 3

0.005

)
− Φ

(
3.0− 0.01− 3

0.005

)
= Φ (2)− Φ (−2) = 0.9544

Hence, about 4.6% fall outside the speci�cations.
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Theorem Let X be a binomial random variable with mean and variance µ =

np, σ2 = np (1− p). Then, as n→∞,the distribution of

Z =
X − np
√
npq

is that of a standard normal.

This theorem enables us to approximate binomial probabilities with those of a

normal.

Example Suppose that we have a binomial distribution with parameters n =

50, p = 0.05. Compute P (X = 4)Since np = 2.5

P (X = 4) ' Φ

(
4.5− 2.5√

2.5 (1− 0.05)

)
− Φ

(
3.5− 2.5√

2.5 (1− 0.05)

)
= Φ (1.2978)− Φ (0.64889)

= 0.90282− 0.741795 = 0.161

The exact value is 0.8964− 0.7604 = 0.136.
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Example Suppose that we have a binomial distribution with parameters n =

100, p = 0.05. Compute P (X = 10)Since np = 5,np (1− p) = 4.75

P (X = 10) ' Φ

(
10.5− 5√

4.75

)
− Φ

(
9.5− 5√

4.75

)
= Φ (2.52)− Φ (2.06)

= 0.9941− 0.9803 = 0.0138

Also, P (5 ≤ X ≤ 10) = P (4.5 ≤ X ≤ 10.5) = 0.58471
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Table 1: Normal approximation to the binomial

Table 3.1 P.141 shows how well the approximation works. It is usually good

whenever np≥ 5 and n (1− p)≥ 5
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1.7 Gamma and exponential distribution

We �rst derive the exponential distribution.

Returning to the derivation of the Poisson distribution, let T be the time

until the �rst call received by an operator. Then,

P (T > t) = P (”0”successes)

= (n0 ) (1− p)n

=

(
1− λt

n

)n
→ e−λt

Hence, F (t) = P (T ≤ t) = 1−e−λt and the density becomes f (x) = λe−λx, x >

0, λ > 0.

The mean and variance of the exponential distribution are

µ = λ−1, σ2 = λ−2

Example Suppose that the mean time to failure of an electrical component is

5 years. What is the probability that the component is still functioning

after 8 years?

P (T > 8) = e−
8
5 = 0.2

Suppose now that we have three such components. What is theprobability

that at least 2 such components are still functioning after 8 years?

here we have a binomial with parameters n = 3, p = 0.2.P (X ≥ 2) =

17



(
3
2

)
(0.2)

2
0.8 + (0.2)

3
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The memoryless property.

The exponential distribution has the property that the probability of survival

past a time t0 + t given that it has survived past a time t0 is the same as the

probability that it will survive past tiem t independently of t0. mathematically,

P (T ≥ t0 + t|T ≥ t0) =
P (T ≥ t0 + t, T ≥ t0)

P (T ≥ t0)

=
P (T ≥ t0 + t)

P (T ≥ t0)

=
e−λ(t0+t)

e−λt0

= e−λt = P (T ≥ t)

The implication of this proprty is that components whose lifetime distribu-

tion can be modelled by an exponential distribution do not have to be replaced

regularly. A light bulb for example has to be replaced only when it burns out.

The big issue is then, how do we know if a lifetime distribution can be modelled

by an exponential distribution? This question can be answered using statistical

techiques as described in Chapter 6 section 6.10 p.277.
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The Gamma distribution generalizes the exponential.

De�ne the gamma function

Γ (α) =

ˆ ∞
0

xα−1e−xdx, α > 0

We note Γ (α+ 1) = αΓ (α) ,Γ (n+ 1) = n! for positive integers n.

The continuous random variable X has a gamma distribution with parame-

ters α, β if its density is given by

f (x;α, β) =


1

βαΓ(α) xα−1e−x/βx > 0, α > 0, β > 0

0 otherwise

The mean and variance of the gamma distribution are

µ = αβ, σ2 = αβ2

Here, α describes the speci�ed number of poisson events which must occur and

β is the mean time between failures.

In this formulation, the mean and variance of the exponential distribution

are

µ = β, σ2 = β2
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Example Suppose that we receive on average 5 e-mails per minute. What is

the probability that we will have to wait at most 1 minute before two calls

arrive?

Here, β = 1/5.α = 2. Integrating by parts, we get

P (X ≤ 1) =
1

βαΓ (α)

ˆ 1

0

xα−1e−x/βdx

= 1− e−5 − 5e−5
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1.8 Chi-squared distribution

The chi-squared distribution is a special case of the gamma with α = ν/2, β =

2.The mean and variance of the chi-squared distribution are

µ = ν, σ2 = 2ν

Table A.5 p.441 provides critical values of the chi-squared distribution.

Proposition If X ∼ N
(
µ, σ2

)
, then

(
X−µ
σ

)2

∼ χ2
1

Example If X ∼ N
(
µ, σ2

)
, we can calculate from Table A.5 p.441 and p.442

P

(
0.455 <

(
X − µ
σ

)2

< 5.024

)
= 0.50− 0.025 = 0.4750
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